Metric-Locating-Dominating Sets in Graphs
نویسندگان
چکیده
If u and v are vertices of a graph, then d(u, v) denotes the distance from u to v. Let S = {v1, v2, . . . , vk} be a set of vertices in a connected graph G. For each v ∈ V (G), the k-vector cS(v) is defined by cS(v) = (d(v, v1), d(v, v2), · · · , d(v, vk)). A dominating set S = {v1, v2, . . . , vk} in a connected graph G is a metric-locatingdominating set, or an MLD-set, if the k-vectors cS(v) for v ∈ V (G) are distinct. The metric-location-domination number γM (G) of G is the minimum cardinality of an MLD-set in G. We determine the metric-location-domination number of a tree in terms of its domination number. In particular, we show that γ(T ) = γM (T ) if and only if T contains no vertex that is adjacent to two or more end-vertices. We show that for a tree T the ratio γL(T )/γM (T ) is bounded above by 2, where γL(G) is the locationdomination number defined by Slater (Dominating and reference sets in graphs, J. Math. Phys. Sci. 22 (1988), 445–455). We establish that if G is a connected graph of order n ≥ 2, then γM (T ) = n−1 if and only if G = K1,n−1 or G = Kn. The connected graphs G of order n ≥ 4 for which γM (T ) = n− 2 are characterized in terms of seven families of graphs.
منابع مشابه
New results on metric-locating-dominating sets of graphs
A dominating set S of a graph is a metric-locating-dominating set if each vertex of the graph is uniquely distinguished by its distances from the elements of S, and the minimum cardinality of such a set is called the metric-locationdomination number. In this paper, we undertake a study that, in general graphs and specific families, relates metric-locating-dominating sets to other special sets: ...
متن کاملStrength of strongest dominating sets in fuzzy graphs
A set S of vertices in a graph G=(V,E) is a dominating set ofG if every vertex of V-S is adjacent to some vertex of S.For an integer k≥1, a set S of vertices is a k-step dominating set if any vertex of $G$ is at distance k from somevertex of S. In this paper, using membership values of vertices and edges in fuzzy graphs, we introduce the concepts of strength of strongestdominating set as well a...
متن کاملLocating-Dominating Sets and Identifying Codes in Graphs of Girth at least 5
Locating-dominating sets and identifying codes are two closely related notions in the area of separating systems. Roughly speaking, they consist in a dominating set of a graph such that every vertex is uniquely identified by its neighbourhood within the dominating set. In this paper, we study the size of a smallest locating-dominating set or identifying code for graphs of girth at least 5 and o...
متن کاملIdentification, location-domination and metric dimension on interval and permutation graphs. I. Bounds
We consider the problems of finding optimal identifying codes, (open) locating-dominating sets and resolving sets of an interval or a permutation graph. In these problems, one asks to find a subset of vertices, normally called a solution set, using which all vertices of the graph are distinguished. The identification can be done by considering the neighborhood within the solution set, or by emp...
متن کاملAlgorithms and Complexity for Metric Dimension and Location-domination on Interval and Permutation Graphs
We study the problems Locating-Dominating Set and Metric Dimension, which consist in determining a minimum-size set of vertices that distinguishes the vertices of a graph using either neighbourhoods or distances. We consider these problems when restricted to interval graphs and permutation graphs. We prove that both decision problems are NP-complete, even for graphs that are at the same time in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Ars Comb.
دوره 73 شماره
صفحات -
تاریخ انتشار 2004